IPSec Present and future

P.V. Ananda Mohan Ph.D. Fellow IEEE CDAC, Bangalore

AGENDA

- IPSec Introduction
- Protocols in IPSec
- Attacks on IPSec
- IPSec in post-quantum era
- Conclusion

An Internet packet

VERS HLEN SERVICE TYPE TOTAL LENGTH					
IDENTIFICATION		FRAGMENT OFFSET			
PROTOCOL	HEADER CHECKSUM				
SOURCE IP ADDRESS					
DESTINATION IP ADDRESS					
IP OPTIONS IF ANY					
DATA					
	SERVICE TYP PROTOCOL SOURCE IF DESTINAT S IF ANY	SERVICE TYPE TOT FLAGS PROTOCOL HEA SOURCE IP ADDRESS DESTINATION IP ADD S IF ANY DATA			

IPsec

- Provides Security services at the IP layer
- Two mechanisms
- Authentication Header provides data integrity, data origin authentication, and protects the payload from replay attacks using sequence number
- **ESP** (encapsulation Security Payload) provides confidentiality, data origin authentication.
- Relationships between devices are called SA (security associations)
- Policy controlled by Security Policy Database (SPD)
- Key Management scheme is IKE (Internet Key exchange)
- ISAKMP (Internet Security association key management protocol) for authentication and key exchange)

IP Sec in Transport Mode

Authenticated Except mutable fields

Authenticated

AUTH is obtained by HMAC and MSB 96 bits are chosen. 5
HMAC-MD5-96 or HMAC-SHA1-96

AH

- Can use HMAC-MD5, HMAC-SHA
- SPI identifies a security association.
- Sequence number is 32 bit counter and if it exceeds 2³², new SA will be needed.

- Authentication covers cipher text plus ESP header
- Padding needed to cater for block ciphers

Key management

- ISAKMP (Internet Security association key management protocol)
- Oakley Key agreement protocol

ISAKMP Header

|--|

Algorithms used in IPSec

- <u>HMAC-SHA1/SHA2</u> for integrity protection and authenticity.
- <u>TripleDES</u>-<u>CBC</u> for confidentiality
- <u>AES</u>-CBC for confidentiality.
- AES-<u>GCM</u> providing confidentiality and authentication together efficiently.

Attacks on IPSec

- S. Vaudenay, Security flaws induced by CBC padding – padding oracle attack on CBC mode
- Server gives "invalid padding" instead of "encryption failure".
- Bleichenbacher oracles on IKEv1 implementation on PKCSv1
- Attacker issues queries to server a number of times to guess key bytes.
- For a AES key, 4096 queries need to be made in the worst case.
- SLOTH attacks (security losses from obsolete and truncated transcript hashes)
- FREAK atack (factoring RSA export keys)

Post Quantum cryptography

- Problems such as factorization, Discrete logarithm, EC (elliptic curve) Discrete logarithm can be solved by Shor's algorithm
- Grover's algorithm can be tackled using bigger key lengths.
- Hence NIST called for proposals for Encryption, Key exchange and digital signatures, authentication

Requirements for PQ IPSec

- The size of encryption keys and signatures.
- The time required to encrypt and decrypt on each end of a communication channel, or to sign messages and verify signatures.
- The amount of traffic sent over the wire required to complete encryption or decryption or transmit a signature for each proposed alternative.

PQ cryptoalgorithms

- Five approaches
- (a) Learning with Errors (lattice based) (in a ndimensional vector space closest vector problem, shortest vector problem, NTRU)
- (b) Isogeny on Elliptic curves for key exchange
- (c)Code based cryptography McEliece and Neiderwriter use Error correction codes to derive public and private keys with purposefully injected errors)
- (d) Multivariate quadratic equations
- (e) Hash based signatures (Merkle trees)

Learning with errors problem

$$f_{\mathbf{x}}(\mathbf{a}) = a_0 x_0 + \dots + a_n x_n + \epsilon \mod q$$

$$\mathbf{pk} = \begin{bmatrix} a_{00} & a_{01} & \cdots & a_{0n} & y_0 \\ a_{10} & a_{11} & \cdots & a_{1n} & y_1 \\ \vdots & & & \\ a_{n0} & a_{n1} & \cdots & a_{nn} & y_n \end{bmatrix}$$
$$\mathbf{sk} = (s_0, s_1, \dots, s_n)$$

To encrypt a bit , choose randomly the columns and embed m in the last coordinate of the result by adding 0 or q/2.

Comparison of various methods for Signatures and Key exchange

	Signatures	Key Exchange	Fast?
Elliptic Curves	64 bytes	32 bytes	\checkmark
Lattices	2.7kb	1 kb	\checkmark
Isogenies	X	330 bytes	Х
Codes	X	1 mb	\checkmark
Hash functions	41 kb	X	\checkmark

MICROSOFT

- Two signature schemes and two key exchange schemes
- FrodoKEM

FrodoKEM is based upon the Learning with Errors problem, which is, in turn, based upon lattices.

• <u>SIKE</u>

SIKE (Supersingular Isogeny Key Encapsulation) uses arithmetic operations of elliptic curves over finite fields to build a key exchange.

• <u>Picnic</u>

Picnic is a public-key digital signature algorithm, based on a zeroknowledge proof system and symmetric key primitives.

• <u>qTESLA</u>

qTESLA is a post-quantum signature scheme based upon the Ring Learning With Errors (R-LWE) problem.

CONCLUSION

- Implementations on VLSI, FPGA, GPUs are being optimized
- Cryptanalysis by peers is being done.
- NIST hopes that more than one suite can be selected for different applications
- IPSec is expected to use these in the next decade