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Motivation
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Information Security & Cryptography

Information Security: study of techniques to prevent unauthorised
access or use of information.

Basic goals:
I Confidentiality
I Authentication
I Data integrity
I Non-repudiation

Cryptography: provides mathematical foundations and techniques
to realise the above goals.
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Cryptography

Cryptography has been used since the Roman times, and also in
the World Wars.

Figure: Enigma Cipher Machine
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Cryptanalysis & Core Problems

Cryptanalysis: study of techniques to defeat the goals of
cryptographic primitives and protocols.

Core problems in traditional cryptography (upto 1980s)
I Key establishment
I Secure communication

I Confidentiality
I Integrity
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Cryptanalysis & Core Problems

Figure: Evesdropping Adversary
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Domain of Cryptology in Information Security
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Side-Channel Attacks

Traditionally, cryptosystems were viewed as black-boxes.

Change of view in the crypto research community since mid-90s
due to Kocher et al.

Figure: Adversary inspecting an execution

Dr. Srinivas Vivek
Revisiting Time-Memory Trade-offs Slide 7



Side-Channel Attacks

Traditionally, cryptosystems were viewed as black-boxes.

Change of view in the crypto research community since mid-90s
due to Kocher et al.

Pre-history of implementation-based attacks
I WWI: Eavesdropping field telephones.
I WWII: Bell Labs electromagnetic side-channel attack.
I MI5/GCHQ acoustic side-channel attacks.
I TEMPEST: US government classified program.
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Side-Channel Attacks

Examples:

I Timing attacks
I Power analysis attacks

I Simple power analysis
I Differential power analysis
I Template attacks

I Electro-magnetic attacks
I Cache attacks
I Others: acoustics, thermal, photonic emmision attacks

Different operations + data =⇒ Different physical “leakage”.
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Side-Channel Attacks

Figure: PAA experiment setup
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Side-Channel Attacks

Figure: SPA attack on an RSA implementation
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Side-Channel Attacks

Practical threat for embedded device implementations.
I Microcontrollers and smart cards vulnerable to power analysis

attacks.
I Other IoT devices are vulnerable too.

Even advanced architectures are prone to cache, timing, and power
attacks.

Possible to mount side-channel attacks remotely by injecting
malware.

“Attacks only get better ” – K. G. Patterson.

SCA & countermeasures - active research area since two decades.
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Countermeasures against SCA

Goal : minimise the effect of side-channel leakage.

In this talk, we focus only on countermeasures against power
analysis attacks.

Countermeasures against PAA can be broadly categorised as:
I Make the leakage of the device independent of intermediate

variables.
I E.g: Hiding countermeasure

I Make intermediate variables independent of secret variables.
I E.g.: Masking countermeasure
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Masking Countermeasure

Masking: a popular countermeasure against DPA attacks.

Well-suited to protect block cipher s/w and h/w implementations.

Method : each sensitive variable x ∈ F2n is secret shared.
I x = x0 ⊕ x1 ⊕ . . .⊕ xv

I Security : (any subset of) intermediate variables are
independent of x .

Security offered has been relatively well analysed
I probing [ISW03] & noisy leakage model [CJJR99, RP13, DDF14].
I Loosely speaking, SCA complexity is exponential w.r.t. v .

[ISW03] Y. Ishai, A. Sahai, D. Wagner. Private circuits: Securing hardware against probing attacks. CRYPTO’03.
[CJRR99] S. Chari, C.S. Jutla, J.R. Rao, P. Rohatgi. Towards sound approaches to counteract PAA. CRYPTO’99.
[RP10] M. Rivain, E. Prouff. Provably secure higher-order masking of AES. CHES’10.
[DDF14] A. Duc, S. Dziembowski, S. Faust. Unifying Leakage Models: From Probing Attacks to Noisy Leakage.
EUROCRYPT’14.
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Masking of Block Ciphers

Block cipher: a symmetric-key cryptographic primitive used in
many cryptographic constructions
I E.g.: DES, AES, PRESENT, etc.
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AES
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Masking of Block Ciphers

Linear/Affine functions are straightforward to compute in presence
of shares.
I f (x) = f (x0)⊕ f (x1)⊕ . . .⊕ f (xv )

I Time and randomness complexity are both linear in the number
of shares.

Main challenge is to securely compute non-linear functions.
I Various masking schemes differ mainly in how these functions

are evaluated.
I For block ciphers, this reduces to securing their S-boxes.
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Table-based S-box Masking

Originally proposed in [CJJR99].

Input:
I (n,m)-S-box
I Two input shares x1, x2, s.t.

x = x1 ⊕ x2

Output:
I Two output shares y1, y2, s.t.

S(x) = y1 ⊕ y2
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Table-based 1-O S-box Masking (cont’d)

Method:
I Create a temporary table T in RAM s.t.

T (a) = S(x1 ⊕ a)⊕ y1 ∀ a ∈ {0,1}n

I Compute: y2 = T (x2)

I Output shares: y1, y2

Correctness: S(x) = y1 ⊕ y2

1-O Security: first-order secure in the probing model.
I Every intermediate variable (incl. i/o) independent of x .
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Table-based 1-O S-box Masking (cont’d)

For an (n,m)-S-box:
I Pre-processing (offline) run time: O((n + m) · 2n)

I Look-up (online) time: O(n + m)

I RAM memory: O(m · 2n) bits
I Randomess: None

AES: time overhead factor: 2 to 4, RAM memory = 256 bytes.

RAM Memory can be expensive for highly resource-constrained
environments.

Alternate approaches exist ([PR07 ]): O(1) RAM but time overhead
factor ≥ 30 .

[PR07 ] E. Prouff, M. Rivain. A generic method for secure Sbox implementation. WISA’07.
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Look-up Table Compression

A look-up table compression scheme was proposed in [RRST02].

RAM Memory reduced by a factor `.
I Compression level: ` (1 ≤ ` ≤ m)
I Size of Table T ≈ (m·2n)

` bits

Time-memory trade offs by varying `
I bigger `⇒ lesser RAM
I bigger `⇒ greater online time

[RRST02] J.R. Rao, P. Rohatgi, H. Scherzer, S. Tinguely. Partitioning attacks: Or how to rapidly clone some GSM cards.
IEEE S&P’02.
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Improved First-Order Look-up Table Compression

An improved look-up table compression scheme was by Vadnala
[Vad17 ].
I Variant of [RRST02].

RAM Memory reduced by a factor ≈ 2` (instead of `).
I Compression level: ` (1 ≤ ` ≤ n)
I Size of Table T ≈ m · 2n−` + (n − `) · 2` bits

Time-memory trade offs by varying `

[Vad17 ] P.K. Vadnala. Time-memory trade-offs for side-channel resistant implementations of block ciphers. CT-RSA’17.
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[Vad17] Table Compression Scheme (cont’d)

Idea: “pack” 2` table entries of the original T .

a = a(1)︸︷︷︸
n−`

|| a(2)︸︷︷︸
`

Step 1: create Table T1 : {0,1}n−` → {0,1}m s.t.

T1(a(1)) =

(
⊕

i∈{0,1}`
S((a(1) ⊕ ri) || i)

)
⊕ y1, ∀ a(1) ∈ {0,1}n−`

I ri ∈ {0,1}n−` uniform random and independent
I y1: an output share

Randomess complexity: 2` (n − `-bit) words.
I Recall : original table-based method needs no additional

randomness.
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[Vad17] Table Compression Scheme (cont’d)

Let the (secret) input be x

x = x (1)︸︷︷︸
n−`

|| x (2)︸︷︷︸
`

Step 2: “create” Table U : {0,1}` → {0,1}m in RAM s.t.

U(i) = S(x (1) || i)⊕ y1, ∀ i ∈ {0,1}`

by “securely” accessing tables T1 and S.

NOTE: U cannot be directly computed from S and x .

Step 3: “securely” compute the second output share

y2 = U(x (2)) = S(x)⊕ y1

NOTE: Actually need Table T2 = Table U shifted by shares of x (2).
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Our Contribution - Part 1
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Improving Randomness Complexity

We improved the randomness complexity of the first-order secure
table compression masking scheme from [Vad17 ].
I Still retaining first-order security (in the probing model).

New randomness complexity is ≈ ` (n − `-bit) words, instead of
≈ 2` (n − `-bit) words.

We prove that the achieved complexity is optimal.

RAM memory remains unchanged.

Running time “essentially” remains unchanged on big-architectures.
I May possibly improve for highly-resource constrained

environments.
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Improving Randomness Complexity: Our Method

Recall: first step in [Vad17 ] needs to generate ri
$← {0,1}n−`

T1(a(1)) =

(
⊕

i∈{0,1}`
S((a(1) ⊕ ri) || i)

)
⊕ y1, ∀ a(1) ∈ {0,1}n−`

Our Idea
I Sufficient for ri to be pair-wise independent (and unif.

random).
I Sample `+ 1 no. of γj

$← {0,1}n−`.
I Compute ri as subset xor sum of γj .
I Rest of the method essentially remains the same

One extra γ is needed as otherwise r0 = 0.

Security proof: enumerate all intermediate variables and show
independence.
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Randomness Complexity: Proof of Optimality

Algebraic lower bound: At least ` values of γj are needed.
I Computation model: only F2-linear operations are performed.

(Nearly) all the known table-based masking schemes use only xor
for arithmetic operations.

Proof idea: assume only t < ` many γj were used.

ri = ci ⊕
1≤j≤t

bj · γj , where bj ∈ F2 , ci ∈ {0,1}n−l

There exist rp, rq (p 6= q) s.t.

rp ⊕ rq = cp ⊕ cq

Then an intermediate variable depends on bits of x

ind2 = x (1) ⊕ cp ⊕ cq
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Our Contribution - Part 2
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Attack on the 2-O Table Compression Scheme [Vad17]

[Vad17 ] also proposed a second-order table compression scheme
I Generalisation of the first-order method.
I Claimed to be second-order secure in the probing leakage

model.

We contradict the second-order security
I Attack: there exist several pairs of intermediate variables that

jointly depend on the secret input.
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2-O Table Compression Scheme [Vad17]

Three steps similar to the first-order scheme.

Step 1: Create Table T1 : {0,1}n−` → {0,1}m
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2-O Table Compression Scheme [Vad17]
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2-O Table Compression Scheme [Vad17]

Three steps similar to the first-order scheme.

Step 1: Create Table T1 : {0,1}n−` → {0,1}m

Step 2: Create Table T2 : {0,1}` → {0,1}m

Step 3: Access Table T2 to compute the third output share.

y3 = T2(v (2))
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Our Attack on 2-O Scheme of [Vad17]

We show that any pair of entries in Table T2 jointly leak up to n − `
bits of x .

Lemma
Let β1, β2 ∈ {0,1}l . Then

T2(β1)⊕ T2(β2) = S(x(1) || (β1 ⊕ x (2) ⊕ v (2)))

⊕ S(x(1) || (β2 ⊕ x (2) ⊕ v (2)))
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Our Attack on 2-O Scheme of [Vad17]

We show that any pair of entries in Table T2 jointly leak up to n − `
bits of x .

Implies when ` = 1 all but one bit of x may leak

Attack does not apply for
I ` = 0
I ` = n
I if output of S only depends on least significant ` bits of input
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Conclusion

We improved the randomness complexity of 1-O table compression
scheme in [Vad17 ].
I Time & memory complexity essentially remains unchanged.

The new randomness complexity is optimal in an algebraic sense.

Attack on the 2-O table compression scheme in [Vad17 ].

Open problem: to construct second + higher-order table
compression schemes.
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Thank You!
&

Questions?

Dr. Srinivas Vivek
Revisiting Time-Memory Trade-offs Slide 32



Reference

Srinivas Vivek, Revisiting a Masked Lookup-Table Compression
Scheme, INDOCRYPT 2017.

Dr. Srinivas Vivek
Revisiting Time-Memory Trade-offs Slide 33



Sources of images:

I Internet of Things (on Slide 3): www.bestvpn.com
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